Feature Selection for Intrusion Detection Using Random Forest

نویسندگان

  • Md. Al Mehedi Hasan
  • Mohammed Nasser
  • Shamim Ahmad
چکیده

An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various irrelevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and interpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most important and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Toward Lightweight Intrusion Detection System Through Simultaneous Intrinsic Model Identification

Intrusion Detection System (IDS) should guarantee high detection rates with minimum overheads to figure out intrusion detection model and process audit data. The previous approaches have mainly focused on feature selection of audit data and parameters optimization of intrusion detection models. However, feature selection and parameters optimization have been performed in separate way. Several h...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

Fuzzy K-mean Clustering Via Random Forest For Intrusiion Detection System

Due to continuous growth of the internet technology, there is need to establish security mechanism. So for achieving this objective various NIDS has been propsed. Datamining is one of the most effective techniques used for intrusion detection. This work evaluates the performance of unsupervised learning techniques over benchmark intrusion detection datasets. The model generation is computation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016